Do we need stacktail betatron cooling?

- Input conditions:
 - ≥50 mA/hour
 - 50 π mm mr (95% normalized)
 - 2 second cycles
- Output Conditions
 - ≥50 mA/hour
 - $\le 10 \,\pi$
 - − ~30 minutes
 - Max stack size ~30 mA

- Core Betatron Cooling
 - 3 bands
 - Slotted waveguide pickups and kickers
 - ~3.5 GHz total bandwidth
- Lots of stacktail power
 - Extra heating terms
- Low stack sizes
 - Good cooling rates

Mcginnis Model, Summer 03

Recast standard transverse cooling equation

$$\frac{d\epsilon}{dt} = -\frac{W}{N} [2Re\{g\} - |g|^2 (\frac{1}{n_l} \sum_n \frac{f_0}{\Delta f_n}) - |g|^2 U]\epsilon$$

• Form suitable for stacking, where density is changing as function of energy and time

$$\frac{\mathrm{d}\epsilon(\mathbf{t},\mathbf{E})}{\mathrm{d}\mathbf{t}} = -\frac{1}{\tau_c} (2\mathrm{Re}\{\mathbf{x}\} - |\mathbf{x}|^2 \frac{\mathbf{M}(\mathbf{E})}{\mathbf{M}(\mathbf{E}_c)}))\epsilon(\mathbf{t},\mathbf{E}) + \frac{|\mathbf{x}|^2}{\tau_c} \frac{\mathbf{U}_0}{\mathbf{M}(\mathbf{E}_c)}$$

• Integrate over time to follow evolution of 95% point

Modelling

- Core systems:
 - optimum gain at handoff from stacktail to core (momentum)
- Stacktail system:
 - 1-6% of optimum gain
 - Power limited
 - 50 W / tube

	Center (GHz)	Width (GHz)
Core B1	4.833	1.167
Core B2	6	1.167
Core B3	7.167	1.167
Stacktail	5	1

Major difference in calculation

- Stacktail 'gain' is energy dependent
 - Pickup and kickers are in high dispersion
 - Noise kick is also energy dependent
 - Use model of response for transverse pickups with beam centered in aperture
 - See R. Shafer, Pbar 232

11/19/03

Core Betatron Results

- Dave Summer 03 DoE paper:
 - Core at optimum gain:
 - 2.9π
 - Core at 1.6x optimum gain:
 - 2.1π

- Mathematica calculation:
 - Core at optimum gain
 - 5.2π
 - Core at 1.6x optimum gain:
 - 2.1π

Stacktail optimum gain calculation

• Signal power:

 Convolute pickup response with density distribution with approximate form for emittance vs energy (based on form with just core betatron cooling)

• Noise power:

- Effective temperature of 125 K
 - Stacktail momentum system
 - Assumes Liquid Nitrogen cooling of pickups!

• Power limitations:

- 50 W / TWT
- 1 2 TWT's per 32 kicker loops (historically, run with 1 TWT per 32 loops)

Scenarios

- 1. Core betatron only, optimum gain
 - Used in other 4 scenarios
- 2. Stacktail pickup, 15 MeV, 1% optimum gain
 - Proposed location for momentum system
 - Kicker tanks at A20
- 3. Stacktail pickup, 22.5 MeV, 1% optimum gain
 - Require new pickup tanks at A20, new cryo supply
 - Kicker tanks at A40
- 4. Stacktail pickup, 30 MeV, 3% optimum gain
 - Require new pickup tanks at A20, new cryo supply
 - Kicker tanks at A40
- 5. Stacktail pickup, 30 MeV, 6% optimum gain
 - Require new pickup tanks at A20, new cryo supply
 - Kicker tanks at A40

Results

Results

Pickup Position	Fraction of Optimum Gain	95% Emittance after 30 minutes
Core Only		5.2 π
15 MeV	1%	5.1 π
22.5 MeV	1%	5.1 π
30 MeV	3%	4.8 π
30 MeV	6%	4.5 π

Conclusions

- Addition of stacktail betatron using stacktail momentum pickups
 - Not useful (few% improvement)
- Addition of stacktail betatron using new pickups
 - 15% improvement
 - Significant cost
 - TWTs: ~20 necessary (\$800K?)
 - Cryo plumbing
 - Not worth the investment
- Do not proceed with installation of this system